合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 原油油品表面張力與納米級復(fù)合降凝劑的性質(zhì)和溫度有何關(guān)系
> LB膜分析儀-PPI多聚磷酸肌醇磷脂的應(yīng)用(上)
> 液體與大氣之間的界面,液體與固體之間界面,它們與其它部位有什么不同?為什么這里會出現(xiàn)所謂張力?
> N-月桂基-N-甲基葡萄糖酰胺【上】
> 物理酷炫動圖:表面張力,“膜”的力量
> 表面張力對激光深熔焊熔池小孔的影響
> 液體表面張力系數(shù)的數(shù)值計算
> 二糖類的雙子表面活性劑性質(zhì)研究:摘要、介紹
> 家畜中獸藥配方中的改性表面活性劑吐溫20,可降低藥物與胃腸液之間的界面張力
> 新型化學(xué)驅(qū)油劑的分子行為與性能研究
推薦新聞Info
-
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質(zhì)褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應(yīng)
> LB膜技術(shù)在界面相互作用研究中的應(yīng)用
> LB膜技術(shù)在生物基材料改性中的應(yīng)用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(二)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(一)
> LB膜技術(shù)在生物基材料制備、改性和界面相互作用研究
微凝膠顆粒在氣液界面處吸附動力學(xué)及動態(tài)方程研究——材料與方法
來源:上海謂載 瀏覽 1530 次 發(fā)布時間:2021-10-21
二、材料
PNIPAM 顆粒是通過間歇懸浮液合成的 使用文獻中描述的配方進行聚合。 17,18 我們使用 N-異丙基丙烯酰胺 (NIPAM) 作為單體 以 N,N-亞甲基雙丙烯酰胺作為交聯(lián)劑 (2 mol%) 過硫酸鉀作為聚合引發(fā)劑 反應(yīng)。 我們希望粒子攜帶少量 由于引發(fā)中使用的過硫酸鉀而產(chǎn)生的電荷 步。 顆粒通過反復(fù)離心純化 18 000g 并用新鮮 Milli-Q 水替換上清液。 該過程至少重復(fù) 5 次。 然后粒子是 冷凍干燥并儲存。 懸浮液是通過稱重制備的 計算量的凍干顆粒和簡單的 將它們添加到 Milli-Q 水中以獲得所需的濃度 并在使用前攪拌至少 24 小時。 我們準備庫存 0.5 g l-1 濃度的溶液。 暫停較低 通過稀釋該儲備溶液來制備濃度。
三、方法
3.1 顆粒表征
微凝膠的尺寸通過在 Malvern Zeta Sizer 上的動態(tài)光散射測量。 流體動力學(xué)直徑 粒子在 20 ? C 是 589 嗎? 5 nm,使用 Stokes-Einstein 關(guān)系,對應(yīng)的擴散系數(shù)為 7.29 * 10- 13 m2 s- 1 . 校準靜態(tài)光散射用于找到臼齒 通過擬合這些粒子的質(zhì)量和回轉(zhuǎn)半徑 假設(shè)粒子是球形的形狀因子。 我們使用 dn/dc ? 0.167 ml g-1 文獻報道。19 摩爾質(zhì)量為 1.82 * 106 kg mol-1 和回轉(zhuǎn)半徑 (Rg) 在 20 ? C 是 200 嗎? 19 納米。 Rg/Rh 小值表示存在長懸垂 更硬的交聯(lián)核心外圍的鏈。 20
3.2 LB 壓力-面積等溫線
狀態(tài)方程(壓力與吸附質(zhì)量的關(guān)系) 使用朗繆爾槽測定。 所有的實驗都是 在室溫下進行。 首先我們仔細清潔 空氣水界面直到壓力區(qū)壓縮循環(huán)顯示完美水平線的點,并且 最大壓縮壓力 <0.1 mN m- 1 . 然后我們 將已知數(shù)量的顆粒散布在干凈的空氣 - 水中 界面并系統(tǒng)地減少界面面積。 由此產(chǎn)生的壓力變化由壓力記錄 使用 Wilhelmy 板的傳感器。 我們執(zhí)行 3 組不同的 實驗:其中兩組是在 NIMA 上進行的 帶有 Mini PS4 壓力傳感器的 Langmuir 槽使用紙 威廉餐盤。 最大和最小可能區(qū)域 NIMA 槽上的可用容量分別為 500 cm2 和 40 cm2。 在第一組中,我們研究了高初始粒子 加載。 我們涂抹 100 ml 濃度為 0.5 g l-1 的懸浮液。 我們小心地將懸浮液滴在 使用帶有鋒利尖端的 10 ml 注射器通過握住 針非??拷⑵叫杏诮缑?。 我們盡量均勻 將液滴沉積在初始擴散區(qū)域并等待 在我們開始我們之前,至少需要 30 分鐘讓系統(tǒng)穩(wěn)定下來 測量。 對于第二組實驗,我們使用 相同的 NIMA 槽,但這次我們在較低的位置研究系統(tǒng) 初始加載。 我們傳播 40 毫升 0.5 克 l-1 濃度 暫停。 我們再進行一組實驗 Kibron 米槽。 最大和最小可能區(qū)域 在 Kibron 米槽中為 51.50 cm2 和 3.25 cm2 , 分別。 我們將 100 毫升 0.035 克 l-1 粒子溶液涂抹在最初 清潔空氣-水界面。 這些加載條件相似 NIMA 的高負載條件。 這 壓縮率保持在較低水平(NIMA 槽為 10 cm2 min-1 Kibron 米槽為 5 cm2 min-1)。 再現(xiàn)性 通過在下重復(fù)實驗來檢查實驗 相同的條件。 我們還檢查了 壓縮和膨脹循環(huán)。 我們發(fā)現(xiàn)滯后在 壓力值 <2 mN m- 1 . 重復(fù)壓縮-膨脹循環(huán),并且在任何實驗中都沒有發(fā)現(xiàn)顆粒脫離的證據(jù)。
3.3 界面張力測量
我們使用 Dataphysics OCA 設(shè)備來測量表面 微凝膠顆粒負載界面的張力。 我們創(chuàng)造了一種空氣 使用不同濃度的懸浮液中的氣泡 倒針。 界面張力 (g) 計算公式為 解析度 ? 0.01 mN m- 1 通過圖像分析從形狀 氣泡使用眾所周知的拉普拉斯方程。 我們轉(zhuǎn)換 通過使用將界面張力值轉(zhuǎn)換為表面壓力 相關(guān)性 P(t) ? g0 - g(t)。 其中 g0 ? 72 mN m- 1 是 空氣-水界面張力值。 對于界面 張力測量準確,我們確保 氣泡足夠大,以至于它基本上被變形 浮力。 鍵數(shù)定義為 Bo ? DrgR2/g, 其中,Dr 是流體之間的密度差,R 是 液滴的半徑,g 是界面張力。 它是一個 重力/浮力和 表面力。 為了準確測量,建議 Bo 應(yīng)始終介于 0.1 和 1 之間;21 我們檢查這是 在我們所有的測量中。 與表面壓力實驗一樣,所有張力測量均在室內(nèi)進行 溫度。
微凝膠顆粒在氣液界面處吸附動力學(xué)及動態(tài)方程研究——摘要、簡介
微凝膠顆粒在氣液界面處吸附動力學(xué)及動態(tài)方程研究——材料與方法