合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 連鑄結(jié)晶器內(nèi)渣鋼兩相表面張力和界面張力的演變行為與機制
> 含氟防水防油劑的基礎(chǔ)理論知識分享
> 列舉幾個生活中表面張力現(xiàn)象【表面張力在工業(yè)生活中的應用】
> 助劑臨界膠束濃度對芒果細菌性角斑病防治藥劑表面張力的影響(二)
> 數(shù)碼噴印墨水行業(yè)競爭格局、市場規(guī)模及發(fā)展前景
> ?界面流變儀可以測量液體表面張力嗎?界面流變儀與界面張力儀區(qū)別解析
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(二)
> 表面張力儀工作原理、特點及使用注意事項
> 4種油醇烷氧基化物平衡和動態(tài)表面張力、潤濕性、泡沫性、乳化性質(zhì)研究(三)
> 表面張力儀試驗原理和方法解析
推薦新聞Info
-
> 免罩光水性素色面漆配方、制備方法及步驟
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(三)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(二)
> 固體、鹽溶液表面張力測量及與其在潔凈硅橡膠表面接觸角的關(guān)系研究(一)
> 電場處理水浮力、及與普通水的表面張力系數(shù)測定
> 軟物質(zhì)褶皺形成機制新發(fā)現(xiàn):液體浸潤、表面張力與接觸線釘扎效應
> LB膜技術(shù)在界面相互作用研究中的應用
> LB膜技術(shù)在生物基材料改性中的應用
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(四)
> 重軌鋼中氧、硫含量、夾雜物形核率、聚集與界面張力的關(guān)系(三)
不同質(zhì)量濃度、pH、鹽度對三七根提取物水溶液表面張力的影響(二)
來源:日用化學工業(yè) 瀏覽 723 次 發(fā)布時間:2025-01-23
2結(jié)果與討論
2.1三七根提取物的理化性質(zhì)
2.1.1三七根提取物水溶液的pH和電導率
將三七根提取物配制為5 g/L的水溶液并稀釋至各待測濃度,測定其pH值和電導率,結(jié)果如表1所示。由表1可知,三七根提取物水溶液呈弱酸性,電導率較低。Russell提出可以使用電導率儀來計算溶液的離子濃度,以此來量化物質(zhì)的離子性強弱。因此,三七根提取物在水溶液中的離子性較弱,屬于一種非離子表面活性劑。
表1三七根提取物水溶液的pH及電導率
2.1.2三七根提取物的表面張力、臨界膠束濃度、pc20及HLB值
測量不同質(zhì)量濃度的三七根提取物水溶液的表面張力,并繪制表面張力(γ)對質(zhì)量濃度(ρ)的對數(shù)曲線如圖1所示。由圖1可知,隨著三七根提取物的含量增加,溶液的表面張力從65.89 mN/m開始急劇下降,之后逐漸變緩,表明三七根提取物具有較強的表面活性。將轉(zhuǎn)折點兩側(cè)的擬合線外延,相交點的質(zhì)量濃度為0.06 g/L,為了方便計算與稱量,下文初步確定三七根提取物的cmc為0.1 g/L,對應的γcmc為43.67 mN/m。
圖1不同質(zhì)量濃度三七根提取物的表面張力曲線
由三七根提取物的表面張力數(shù)據(jù)可得,三七根提取物的c20約為0.05 g/L,因此三七根提取物的pc20為1.30,cmc/pc20為0.08,表明三七根提取物降低表面張力的效率較高,形成膠束的傾向較強。根據(jù)cmc值計算表面活性劑的HLB值,三七根提取物的理論HLB值為11.02。
因三七不同部位所含皂苷的種類與總量不盡相同,本文也測量了三七葉莖提取物的表面活性。由實驗數(shù)據(jù)可知,三七葉莖提取物在25℃的cmc為0.25 g/L,對應的γcmc為47.2 mN/m,其c20約為0.05 g/L,和三七根提取物接近。而三七葉莖提取物的pc20為1.30,cmc/pc20為0.19,表明三七葉莖提取物比三七根提取物更易吸附在表面,形成膠束的傾向弱于三七根提取物。
2.1.3三七根提取物表面張力的影響因素
1)酸堿度
將0.05,0.1和0.2 g/L的三七根提取物水溶液分別調(diào)節(jié)至pH為4.0~8.0,并測量其表面張力,結(jié)果如圖2所示。同一質(zhì)量濃度下三七根提取物的表面張力隨pH的降低而降低,這可能是因為三七根提取物中的皂苷含有羧基等弱酸性官能團,因此在酸性條件下皂苷的表面活性不會被破壞。
圖2 pH對三七根提取物水溶液表面張力的影響
2)鹽度
分別配制含NaCl質(zhì)量分數(shù)為0%,0.1%和1.0%,三七根提取物質(zhì)量濃度為0.05,0.1,0.2和1.0 g/L的水溶液,測量其表面張力,結(jié)果如圖3所示。相同質(zhì)量濃度下的三七根提取物水溶液,表面張力隨NaCl含量的增加而降低,cmc也有所下降。這表明隨NaCl的增加,三七根提取物降低表面活性的能力及效率都有所增加,可能是由于NaCl的水化作用較強,競爭三七根提取物極性基團附近的水化水,使其疏水作用增強,在界面易于排列形成更緊密的界面膜,有利于膠束形成,從而降低表面張力和cmc。
圖3鹽度對三七根提取物水溶液表面張力的影響
2.2 Tween 20水溶液的表面張力和臨界膠束濃度
測量不同質(zhì)量濃度的Tween 20水溶液的表面張力,并繪制表面張力(γ)對質(zhì)量濃度(ρ)的對數(shù)曲線如圖4所示。將轉(zhuǎn)折點兩側(cè)的擬合直線外延,相交點的質(zhì)量濃度為0.026 g/L,因此下文將Tween 20的cmc計為0.025 g/L,對應的γcmc為40.1 mN/m。Tween 20的c20為0.005 g/L,因此pc20為2.301,cmc/pc20為0.011,在水溶液中更易形成膠團。
圖4不同質(zhì)量濃度Tween 20的表面張力曲線
2.3三七根提取物與Tween 20二元復配體系對表面張力的影響
2.3.1二元復配比例的確定
根據(jù)Rosen相分離模型,當二元混合表面活性劑復配體系在吸附達到平衡時,溶液相與表面相的化學勢能相等(μ溶=μ表),從吸附達到飽和時溶液相與表面相、膠束相的化學勢能相等(μ溶=μ表=μ膠)出發(fā),推導出復配增效的最佳質(zhì)量比值約等于各單一組分臨界膠束濃度的比值,即m1∶m2≈cmc1∶cmc2。根據(jù)之前的實驗結(jié)果,近似地將三七根提取物與Tween 20的復配質(zhì)量比定為4∶1。
2.3.2二元復配體系的表面活性增效
綜合利用Rosen理論及王正武等人對復配增效效果的理論,分別取單組分的臨界膠束濃度(cmc1,cmc2)及相應組分表面張力(γ1,γ2)的加權(quán)平均值作為理想值。
cmc理=x1cmc1+x2cmc2
γ理=x1γ1+x2γ2
式中,x1和x2表示各組分的質(zhì)量分數(shù)。
從兩方面來判定二元體系復配增效的程度,用理論臨界膠束濃度(cmc理)降低的百分數(shù)(A)評價復配體系形成膠束能力增效,用理論表面張力(γcmc理)降低值的百分數(shù)(B)來表示降低溶液表面張力的能力增效。在25℃下,復配體系理論值和表觀值如表2所示。
表2復配體系的表面活性(25℃)
由表2可知,三七根提取物與Tween 20按不同質(zhì)量比復配后,均表現(xiàn)出一定程度的降低溶液表面張力能力增效。復配體系降低溶液表面張力的能力增效比較:體系Ⅲ>體系Ⅰ>體系Ⅱ;復配體系形成膠束的能力增效比較:體系Ⅱ>體系Ⅰ>體系Ⅲ。其中,體系Ⅱ形成膠束的能力增效41.18%,表明其形成膠束的能力較強。體系Ⅱ降低溶液表面張力的能力可以增效1.18%。在理論最佳復配質(zhì)量比下,復配體系cmc為0.05 g/L,γcmc為42.45 mN/m,復配增效作用比較明顯,因此選擇m(三七根提取物)∶m(Tween 20)=4∶1進行復配。